Отрывок из книги о программных интерфейсах

GUI Excise

One of the main criticisms leveled at graphical user interfaces by experienced computer users—notably those trained on command-line systems—is that getting to where you want to go is made slower and more difficult by the extra effort that goes into manipulating windows and icons. Users complain that, with a command line, they can just type in the desired command and the computer executes it immediately. With windowing systems, they must open various folders looking for the desired file or program before they can launch it. Then, after it appears on the screen, they must stretch and drag the window until it is in the desired location and configuration.

These complaints are well founded. Extra window manipulation tasks like these are, indeed, excise. They don't move the user towards his goal; they are overhead that the programs demand before they deign to assist the user. But everybody knows that GUIs are easier to use than command-line systems. Who is right?

The confusion arises because the real issues are hidden. The command-line interface forces an even more expensive excise budget on the user: He must first memorize the commands. Also, he cannot easily configure his screen to his own personal requirements. The excise of the command-line interface becomes smaller only after the user has invested significant time and effort in learning it.

On the other hand, for the casual or first-time user, the visual explicitness of the GUI helps him navigate and learn what tasks are appropriate and when. The step-by-step nature of the GUI is a great help to users who aren't yet familiar with the task or the system. It also benefits those users who have more than one task to perform and who must use more than one program at a time.

Excise and expert users

Any user willing to learn a command-line interface automatically qualifies as a power user. And any power user of a command-line interface will quickly become a power user of any other type of interface, GUI included. These users will easily learn each nuance of the programs they use. They will start up each program with a clear idea of exactly what it is they want to do and how they want to do it. To this user, the assistance offered to the casual or first-time user is just in the way.

We must be careful when we eliminate excise. We must not remove it just to suit power users. Similarly, however, we must not force power users to pay the full price of our providing help to new or infrequent users.

Training wheels

One of the areas where software designers can inadvertently introduce significant amounts of excise is in support for first-time or casual users. It is easy to justify adding facilities to a program that will make it easy for newer users to learn how to use the program. Unfortunately, these facilities quickly become excise as the users become familiar with the program—perpetual intermediates, as discussed in Chapter 3. Facilities added to software for the purpose of training beginners must be easily turned off. Training wheels are rarely needed for extended periods of time, and training wheels, although they are a boon to beginners, are a hindrance to advanced learning and use when they are left on permanently.

Отрывок из книги об управлении программными проектами
Obstacle 3: Tools

Just as the first obstacle (politics) and the second obstacle (process) are intimately related, so are the second and the third. The third, of course, is the toolset that you will use to implement the process. Needless to say, choosing the tools first is getting it bass-ackwards, but surprisingly enough, that’s the way many organizations go about it. They then wind up with the tool determining the process, which can be loads of fun when the process thus derived is inconsistent with the political philosophy of the organization. Obviously, you need tools that will automate and enforce the process you have chosen to use. If you have a process that admits mistakes, you will be “backing out” changes from time to time. Does the tool support that easily? Are developers going to be checking in their work to a common baseline from multiple remote sites? If so, then your tool had better support that model. Do you want to build your entire product from top to bottom every night? If so, then I hope your tool has the performance and turnaround characteristics that will permit that. Do you want to automate your regression testing as part of the build? Once again, tool support is crucial. 

Even organizations that have done a good job with the first two problems sometimes flounder with the third. And sometimes it is not the tools’ fault either. Once again, using our factory analogy, you need someone to monitor the line and to do quality control for the product coming off the line. Without constant vigilance, it is easy to automate a process that produces a low-quality result. Every successful build process requires a foreman or the equivalent thereof; sometimes he or she is called the czar (or czarina) of the build or, more simply, the buildmeister.
 The buildmeister monitors the health of the line and makes sure that a steady stream of good-quality product is produced. 

� Here’s a cautionary, funny, and politically incorrect tale: I once made a big deal about having a czar of the build, and then appointed a fellow who was, shall we say, altitudinally challenged. He unfortunately became known as the czardine of the build. Ouch! 





